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ABSTRACT

Redundant manipulators greatly enhance the performance of robotic systems over
standard non-redundant manipulators. Their larger joint space is capable of meeting
user defined task constraints in addition to the standard Cartesian task constraints.
However, the key to the efficient performance of these manipulators is in the method
of utilizing their increased joint space or the redundancy resolution approach. The
redundancy resolution approach taken for the CIRSSE (9 dof) arm involves the de-
velopment of two inverse functions, the Pnma-Positioner and the Puma-Platform.
The Puma-Positioner defines a secondary task vector as the position of the base of
the PUMA which is then used to expand the workspace of the PUMA. In addition,
a joint limit avoidance scheme is generated around the Puma-Positioner that defines
internally the secondary task vector and generates a joint vector whose components
are within their joint limits. The Puma-:Platform defines the secondary task vector
as the internal position of the links which is then used to accurately position and
orient the end-effector and the manipulator’s links. Finally, an obstacle avoidance
algorithm is created around the Puma-Platform that defines its secondary task vec-
tor based on obstacles entering the manipulator’s workspace. This secondary task
vector is then used to generate link motion that occurs in the null-space of the

end-effector while avoiding the obstacles.
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CHAPTER 1
INTRODUCTION

Redundant manipulators have become an integral part of most robotic systems.
They increase the functionality of the robotic system by offering extra degrees of
freedom and the ability to cope with unexpected disturbances. A manipulator is
characterized by the number of its joints which also determine the degree of freedom
(dof) of the manipulator’s joint space. For a non-redundant manipulator, the dof
of the manipulator’s joint space is equal to the dof its task spaée. The dof of the
task space is determined by the minimum number of variables that are required
to describe any position and orientation in that task space. However, a redundant
manipulator has a greater dof in its joint space than its task space. This inequality
causes the mapping bet{veén the joint spacé rand the task space to be non-unique
for the forward mapping and non-existent for the inverse mapping.

Redundant manipulators have been recognized as being superior to standard
manipulators due to their increased joint space. The fact that there are now more
joints than are needed to meet the consiraints of the task space allows for the
development of additional constraints. Tlese constraints can be used to increase
manipulability, minimize joint torques and as covered in this thesis, avoid joint
limits and obstacles. The task and user defined constraints can be formulated into
an optimization problem. This optimization or redundancy resolution problem is
solved in this thesis through the development of an inverse function. An inverse
function generates a one-to-one and cyclic mapping between the task space and the
joint space of a redundant ma.nipule'\tor. A cyclic mapping is defined as a mapping
in which a closed path always maps into another closed path. The inverse functions
augment the task space with a redundant task space; thus adding the necessary

extra degrees of freedom to the task space. The redundant task space is spanned by
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Figure 1.1: Model of CIRSSE Robotic facilities

configuration variables. The definition of tliese configuration variables differentiates
one inverse fﬂtruilﬂcti(r)n from another. T\\'orirrn'erse functions, the Puma-Positioner and
the Puma-Platform. are implemented in this thesis. The redundant task space of
the Puma-Positioner is described by the three platform Joints, g1, ¢2 and ¢3. These
joints, which deterine the position of the PUMA’s base, are user specified and thus
allow the PUMA 17<7) be translated to a new location. The redundant task space of the
Puma-Platform i described by three spatially visualizable configuration variables,
dl,he and theta. These variables describe the location of the links and thus allow
the user to accurately specify the desired location of the manipulator’s end-effector
and its links.

The formulation of the Puma-Posi tioner and Puma- Pi;tfdrm &werse functions
lend themselves to the applications of joint-limit avoidance and obstacle avoid-
ance, respectively. The Puma-Positioner i incorporated into a joint-limit avoidance
scheme by utilizing its three configuration variables in such a manner as to meet the
position and orientation constraints of the end-effector while avoiding joint limits.

The Puma-Platform's three spatially visualizable configuration variables are used
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in an obstacle avoidance scheme to reconfigure the the internal configuration of the
links in such a manner as to avoid any obstacles without affecting the end-effector’s

motion.

1.1 Motivation

The CIRSSE facilities currently consist of two PUMA manipulators of the 560
and 600 series each mounted on a three dof platform, as described in figure 1.1.
Since each pair of manipulators can be grouped into a single nine dof manipulator,
they are considered to be redundant manipnlators. Redundant manipulators require
special techniques to produce adequate mappings between the joint space and the
task space. These techniques should not only meet the position and orientation
constraints of the end-effector, but should also utilize the extra joints in an efficient
manner. The inverse function approach allows for the efficient usage of the extra
joints. Constraints can be easily implemented to meet any user defined needs.

The Puma-Positioner and Puma-Platform inverse functions were developed in
order to meet the needs of the lah. A great deal of work is done exclusively on the
PUMA. An inverse function was needed that would allow one to not only perform
tasks on the PUMA, but also be able to use the platform to reposition the PUMA
and thus expand its workspace. This was accomplished through the development
of the Puma-Positioner. Also, even with a redundant manipulator, the problem of
joint limits still exist. A joint-limit avoidance scheme was needed that would be
able to meet Cartesian task constraints and also avoid joint limits. This scheme
was developed with the aid of the Puma-Positioner inverse function. The PUMA
atop the platform can viewed as a nine dof manipulator. It would be beneficial
to have a mapping that would allow the user , as is the case in non-redundant
manipulators, to be able to visually identify the configuration of the manipulator.

This would require that the redundant task space be parameterized by visualizable



configuration variables. All this was accomplished through the development of the
Puma-Platform. Finally, since the two CIRSSE manipulators would be cooperating
on tasks and working among obstacles. an obstacle avoidance scheme was needed.
This scheme should be fast and should generate internal link motion without affect-
ing the end-effector’s motion. Such a scheme was developed through the use of the

Purha.-Platform.

1.2 Objectives

Motivated by the structure of the CIRSSE facilities, four objectives were de-

termined and met. These objectives are as follows:

o To develop a Puma-Positioner inverse function that would use the platform to

greatly expand the workspace of the PUMA.

K To develop a joint-ligﬂt avoidance scheme bgsed on the Puma-Positioner that
would allow the user access to the expanded workspace of the PUMA without

the hassle of hitting joint limits.

e To develop a Puma-Platform inverse function that would model the PUMA
and the platform as a single nine dof manipulator and be able to accurately
describe the position and orientation of the end-effector and the internal con-

figuration of the links.

e To develop an obstacle avoidance scheme base on the Puma-Platform that

would utilize the different internal configurations of the links to avoid obstacles.

1.3 Summary

The CIRSSE facilities consist of two nine dof manipulators. Two inverse func-
tions were developed for these redundant manipulators that would provide one-to-

one and cyclic mappings between the joint space and task space of the manipulator.
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These inverse functions, the Puma-Positioner and the Puma-Platform, were then
respectively developed into joint limit and obstacle avoidance schemes. In the fol-
lowing chapters, a detailed description of the inverse functions and the joint limit
and obstacle avoidance schemes will be presented. In chapter two, a literature re-
view of all the material pertaining to this thesis is given. Chapter three deals with
the forward kinematics of the redundant manipulator. Chapter four covers the in-
verse kinematics. The effect of the inverse functions on manipulator singularities
is covered in chapter five. Chapters six and seven deal with the implementation
of the inverse functions in a joint limit avoidance and obstacle avoidance scheme,
respectively. Chapter eight provides the testing and simulation results and chapter

nine offers a conclusion.



CHAPTER 2
LITERATURE REVIEW

The redundanéy lesolutxon ﬁrolﬂem for redundant rtﬁahipulévtors is an optimization
problem that deals with the determination of a joint vector that meets both Carte-
sian ;ﬂd user deﬁﬁéd taal\ constraints. A ;g:rea:t cieal of résearchre@fo'rig has been de-
voted to redundancy resolution and has resulted in the generation of many different
approaches to this problem. These approaches can be divided into two major classes,
- gil()bra.l and local optfllﬂi:zatiOL; schemes. The glrc;rliate:l:ppf;aches, as tlsed by Naka-
mura[l] and Hollerbach[2], generally assume that total knowledge of the tasks and
the workspace is available. They are usually iterative and computationally intense.
These types of approaches lend themselves more to off-line applications than on-
line ones. On-line applications generally utilize local optimization schemes. These
schemes can be subdivided into Jacobian I_)ased and non-Jacobian based schemes.
The Jacobian based schemes translate task and user defined constraints into joint ve-
locities. These joint velocities are then integrated to provide the joint paths. These
schemes tend to be computationally intense since they usually require the compu-
tation of the generalized inverse of the .Jacobian. These schemes also tend to suffer
from drifting. Drifting is defined as the case where for a fixed set of constraints, the
corresponding joint vector that’s produced varies over multiple runs. This is of great
importance in assembly lines where accurate repetition of tasks is of vital interest.
The different Jacobian based methods vary only in the computation of the joint
“velocity vector. Witney[3] utilized the Moore-Penrose Jacobian pseudo-inverse to
produce joint velocities. This gene;alizod inverse optimized the square of the joint
velocities. Sukhan Lee and Jang Lee[8] decomposed a redundant manipulator into

multiple non-redundant manipulators. The generalized inverse of the Jacobian was
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used to translate the task constraints into joint velocities for the multiple manipula-
tors. Zghal and Dubey[6,7] introduced an officient gradient projection optimization
scheme for redundant manipulators. By extracting a non-singular matrix from the
Jacobian matrix, they were able to avoid calculating the generalized inverse of the
Jacobian. Sciavicco and Sicilano[9, 10] introduced the augmented Jacobian method.
They augmented the manipulator’s Jacobian with enough constraints to generate a
square Jacobian matrix. The transpose of the augmented Jacobian was placed in a
feedback loop and used to map a Cartesian space error into a joint velocity. This
method escaped having to use the generalized inverse of the Jacobian but suffered
from convergence problems near singular points.

The non-Jacobian based methods refer mostly to inverse functions. Seraji[l1]
dealt with some control aspects of inverse functions. Wampler(12] and Shamir[14]
provided a comparison between inverse functions and other redundancy resolution
approaches. Hollerbach[13] developed an inverse function for a seven dof manipu-
lator. These four authors are the source of most of the material concerning inverse
functions that's presented in this thesis. Inverse functions produce one-fo—one and
cyclic mappings between the joint space and the augmented task space of a manipu-
lator. They tend to be computationally efficient since they don’t require the calcula-
tion of the Jacobian or its inverse. Inverse functions map tasks directly into the joint
space without having to calculate joint velocities and integrating them. Inverse func- ‘
tions also give one some control over singularities as discussed by Bedrossian[15].
The effect of inverse functions on the singularities of the CIRSSE manipulator is
presented in chapter five. One possible drawback of the inverse function approach
is that it is not a generic process. The mauipulator’s Jacobian can always be deter-
mined and thus Jacobian based schemes apply for all manipulators. However, the
inverse function defined for one manipulator will not necessarily work on another.

This weakness can also be viewed as a strength. If an inverse function is found
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for a manipulator, then this inverse function will be based solely on that manipu-

lator’s characteristics. This means that the inverse function will be both fast and

efficient. The inverse functions, the Puma-Positioner and the Puma-Platform, pre-

‘sented in this thesis exhibit these characteristics. These inverse functions will now

be discussed in some detail.
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CHAPTER 3
FORWARD KINEMATICS

The forward kinematics describes the mapping from the joint space of a manipulator
to its task space. The joint space consists of all possible joint configurations that
the manipulator can assume. The task space contains all the possible position and
orientations that the manipulator’s end-effector can take. This forward kinematic

mapping assumes the form of

T = f(¢) (3.1)

where ¢ is a (n x 1) joint vector, z a (m x 1) task vector and f is a non-linear
function. In addition to the above mapping, the forward kinematics also includes
mappings from the joint space into a set of discrete variables. These variables
are termed bose variables and describe the discrete set of joint configurations that
correspond to each task vector. For non-redundant manipulators, the mapping
from the joint space to the task space and the discrete variables is one-to-one. This
fact indicates that the size or degree of freedom (dof) of the joint space, which is
determined by the number of manipulator joints, is equal to the dof of the task space.
The task space has six dofs for a spatial manipulator where three of those degrees
are for positioning and three are for orienting the end-effector. For a redundant
manipulator, the joint space is larger than the task space. This means that the
forward kinematic mapping is not unique. Also, in addition to the discrete set
of joint solutions that correspond to each task vector, there also exists an infinite
number of joint solutions for each task vector. There now exists a great deal of
flexibility in choosing the joint configurations for a desired task space vector. How

one makes this choice is the central theme of redundancy resolution and is addressed
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in the development of the inverse functions in this thesis.

The inverse function resolves the redundancy resolution problem by generating
a one-to-one forward kinematic mapping. It accomplishes this by augmenting the
manipulator’s task space with a redundant task space. This redundant task space
provides the necessary extra dofs to the task space so that each joint in the joint
space vector is independently represented in the augmented task space vector. The

augmented forward kinematic mapping takes the form of:

z = f(y)
Ty =.(/((/) (32)

where z, is the (r=n-m) redundant task vector and g maps ¢ into z,. The
redundant task space is spanned by r variables termed configuration variables or
kinematic functions. These functions can be chosen arbitrarily with the only condi-
tion being that they are independent of each other and the position and orientation
of the end-effector. Their independence is verified by calculating the augmented
Jacobian. The standard manipulator Jacobian maps the joint velocities into the
task velocities. The augmented Jacobian maps the joint space velocities into both

the task space and redundant task space velocities. It takes the form of:

= ]a(Q) *q (33)

Je
dg/dq

where J. is the (m x n) manipulator Jacobian, dg/dq the is the (r x n) matrix

Jo =

_ representing the gradient of the (r x 1) vector, g and J, is the (n x n) augmented
Jacobian. The independence of the kinematic functions, g, is determined by eval-

uating the rank of the augmented Jacobian. If the augmented Jacobian is rank

(i L [T Wil i W men W mEN m W mi wi il W ]
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Figure 3.1: Model of CIRSSE (9 dof) manipulator

deficient theu the kinematic functions arc not independent and new ones must be
selected.

The ('[RSSI'Z manipulator consists ol a six dof PUMA atop a three dof plat-
form. Figure 3.1 provides a model of tli~ arm where Ps represents the shoulder
position. Pcl the primary elbow position. Pe2 the secondary elbow position and
Pw the wrist position. The inverse [unctions that are developed in this thesis all
correspond to the model in figure 3.1. T'his CIRSSE manipulator is a nine dof
spatial arm that operates in a six dof task space. This fact indicates that there
are three extra dofs in the joint space. Tle inverse functions for this manipulator
are thus required to have a three dof rednndant task space in order to account for
the extra joints. The two inverse functions that were developed are termed the
Puma-Positioner and the Puma-Platforni. The Puma-Positioner has a redundant
task space that i~ spanued by three confignration variables These variables are the

first three platform joint vahies and are termed ¢y, ¢, and g3. The Puma-Platform
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has three kinematic functions in its redundant task space. These functions are
termed d1, he and theta. A detailed description of these inverse functions and their
redundant task space wiil be given in the following sections.

The inverse functions not only define the redundant task space, but also the
pose space. Although the redundant task space provides the necessary extra dofs,
there still exists a discrete set of link configurations that the manipulator can be in
for each desired augmented task vector. These link configurations are termed poses
and comprise the pose space which is spanned by a set of discrete pose variables.
The pose variables for the Puma-Positioner are three in number. They are termed
right_left,wrist and wst_to.e2. There are five pose variables in the Puma-Platform
and are termed right_left.wrist, wsttoc2.e2 to_el and elbow. A complete descrip-
tion of the redundant task space and pose space for each inverse function will now

be given.

3.1 Redundant Task Space

The redundant task space can be considered to be the space consisting of
all secondary task vectors. The primary task of any manipulator is to position
and orient its end-effector. However, for a redundant manipulator, a secondary

task needs to be defined in order to account for the extra joints. These secondary

task vectors that comprise the redundant task space are a function of the inverse

function being used by the redundant manipulator. The Puma-Positioner inverse
function was designed with the purpose of expanding the PUMA'’s workspace. Its
redundant task space is spanned by the three platform joints. The secondary task
for this inverse function is to position the PUMA’s base at the position specified
by the user. The Puma-Platform inverse function was designed with the purpose
of modeling the PUMA and platform as a nine joint manipulator. Its redundant

task space is spanned by three spatially visualizable configuration variables, d1, he

I
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and theta. These variables serve to describe the internal position of the links. The
secondary task for this inverse function is to position the internal links at a position
designated by the user. The redundant task space of the Puma-Positioner obviously
differs from that of the Puma-Platform. However, there are several characteristics
of the redundant task space that are invariant for these inverse functions and for
any other inverse function that's developed for the CIRSSE manipulator. The first
characteristic is the dimensionality of this space. Since the CIRSSE manipulator has
three redundant dofs, the dimension of the redundant task space is three. This fact
ensures that all redundant joints will be represented in the redundant task space.
The second characteristic is independence. All redundant task spaces are spanned
by a basis vector that’s independent of the task space vector. This independence
ensures that each joint is represented either by the task space or redundant task
space vector. Finally. the last characteristic is the existence of a null-space. The
null-space of a redundant manipulator is defined as the set of all joint motions for
which there is no change in the position and orientation of the end-effector. The
basis vectors that span the redundant task space serve to describe the null-space.
A detailed description of the configuration variables that define the redundant task

space for the Puma-Positioner and Puma-Platform will now be given.

3.1.1 Puma-Positioner Configuration variables

The configuration variables in the Puma-Positioner are the three joints of the
platform, g;.¢; and gz. They serve only to indicate the position and orientation of
the platform which in turn indicates the position and orientation of the PUMA's
base. The secondary task being performed hy these kinematic functions is to monitor
the location of the PUMA's base. Since the inverse function is used to expand the
PUMA’s workspace, this definition of the kinematic functions is suitable to this

task. Since the kinematic functions exactly match the first three joint angles, they
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are identity functions. This means that the rank of the augmented Jacobian is
equal to that of the manipulator’s Jacobian, J.. This result is documented in the
appendix. Since, by definition. the manipulator’s Jacobian is always of full rank

except at singular points, these three configuration variables are independent and

thus, valid choices.

3.1.2 Puma-Platform Configuration variables

The redundant task space for the Puma-Platform is parameterized by three
variables, d1, he and theta. These variables correspond to a base distance, an elbow
height and an angle of elbow rotation, 1‘e.\:pectively. These variables are spatially
”visualizabler; thus allowing them to be approximately identified by sight. Each vari-
able operates in the null-space of the end-effector. This means that each variable
describes a subset of the internal link configurations corresponding to a fixed po-
sition and orientation of the end-effector. The secondary task being performed by
these kinematic functions is to describe the location of the internal links.i.e the links
between the platform’s base and the end-cffector.The augmented Jacobian, as de-
scribed in (33), is calculated and is determined to be of full rank except at singular
configurations. This result is documented in the appendix. Since the augmented
Jacobian is not rank deficient, the kinematic functions are independent of each other
and the task vector. The internal link motion of the manipulator is termed the self-
motion manifold and is completely described by the redundant task vector z,. The
three redundant variables that comprise . each serve to describe an independent
subspace of the self-motion manifold of the manipulator. In the next few sections,

a detailed description of each variable will be given.
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Figure 3.2: Description of Configuration variable ke

3.1.2.1 Base distance

The base distance d1 represents the distance from the zeroth coordinate frame
to the first coordinate frame located on the base of the platform along the linear
rails. This parameter. which is rdisplé;vecl in ﬁguré 3.1 ,was chosen for two reasons.
The first being that it was analytically shinple since it is actually the first joint of
the manipulator. Secondly. by specifying this redundant variable, the user is able

to translate the entire manipulator thus changing the approach vector to the target.

3.1.2.2 Elbow height

The elbow height he rvepresents the perpendicular distance of the secondary
elbow from the line adjoining the primary clbow to the wrist and is shown in figure
3.2. This parameter serves to set the value of joint six and is described by the

following set of equations:
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rl = VA6% + D1° (3.4)

1 = \[A52 + 1% + 2+ A5 (DT » sin(q6) + A6 * cos(g6)) (3.5)
(2% A5x21)2 — (212 4 A5? —r12)?
he = \f 4xz1? (3.6)

where z1, which represents the distance from the primary elbow to the wrist,
and r1 represents the total length of link five including the offset AS.

It should be noted that due to the difference Vin lengths of links four and five
and the definition of ke, 21 ranges from rl + A5 to /712 — A5%. This, in turn,
causes he to vary between 0 and A5. Also, when he is zero, this corresponds to
the PUMA elbow singularity. Singularities will be covered in greater detail in the
chapter on singularity analysis.

The redundant parameter he was chosen for two reasons. The first being that
due the existence of two elbows on this manipulator, only one is needed in order to
completely specify motion in the vertical plane. It was necessary to set one of the
elbow positions to some specified position. Also, this elbow height serves as a good
indicator of where the last two links of the rhar.ﬁipurlé.tor:are. The elbow height was
very useful in creating the obstacle avoidance algorithm that is discussed in a later

chapter in this thesis.

3.1.2.3 Angle of Elbow rotation

The angle of elbow rotation, theta, is described as the angle of rotation of the
primary elbow around the line adjoining the shoulder to the wrist and is shown in
figure 3.3. This parameter defines the value of joint four and with the task vector
defines the values for joints two and three. The parameter theta, which is a function
of the variables n, a ilnit vector from the shoulder Ps to the wrist Pw, and pe, a

unit vector from the shoulder Ps to the primary elbow Pel, can be calculated as
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Figure 3.3: Description of Configuration variable theta

follows:

pe

n

i
il

cos(theta)
sin{theta)

theta

I’el — Ps
Il — Ps||
’w— Ps
I|Fw — Psl|

1

0

!

{(z25n)0O (pe®@n)

iz 3nll «llpe ® n|l

\/l — cos?(theta)

tan™!(

sin(theta)

cos(theta)
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

The variable theta thus represents the angle of rotation of the vector pe into

the vector = around the unit vector n.
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The redundant variable theta models the redundancy inherent in the human
arm. The human arm is capable of generating redundant motion by rotating the
elbow while keebing the wrist and shoulder fixed. Since the nine joint manipulator,
described in figure 3.1, is a model of the human arm, the choice of theta as a
redundant parameter is a suitable one. Auother reason for éhoosing theta is that
it parameterizes the internal links into a plane rotating around the unit vector n.
This parameterization is of immense value in the obstacle avoidance algorithm that’s
described in a later chaptgéi".”’ -

In summary, the redundant task space is parameterized into three separate
subspaces by its three configuration variables. This means that each configuration
variable is independent of each other. Any variation in one of the variables has no
effect on any of the others. The configuration variables for the Puma-Positioner
and Puma-Platform inverse functions serve to describe the position of the PUMA'’s
base and the position of the internal links. respectively. These variables can assume
a continuous range of values within the mnanipulator’s workspace and allow for the
generation of an infinite number of link configurations. The fact that the redundant
task space is spanned by continuous variahles is one of the major difference between
it and the pose space. The pose space is spanned by discrete variables that allow

for the generation of a finite number of link configurations.

3.2 Pose Space

The pose space is a characteristic of both redundant and non-redundant ma-
nipulators. All rigid link manipulators have a finite number of different link con-
figurations that correspond to a fixed position and orientation. These different link
configurations are termed poses and comprise the pose space. The pose space is
spanned by a set of parameters termed pose variables. These pose variables are

discrete variables that can only assume one of three values. These values are one,
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negative one and zero, where zero indicates that the links are aligned. Although
both the pose space and the redundant task space represent link configurations, they
can’t be combined into one space for several reasons. The first is, as stated above,
the pose space is spanned by discrete variables while the redundant task space is
spanned by continuous variables. Secondly. the redundant task space resides in the
null-space of the end-effector, but the pose space doesn’t. As one induces motion
in the redundant task space, the end-effector remains fixed while the links change
configuration. However, as one goes from one pose to another, the end-effector un-
dergoes some motion before returning to its original position and orientation. A
thorough description of the pose variables for both inverse functions will now be

given.

3.2.1 Puma-Positioner pose variables

The pose space for the Puma-positioner is described by three pose variables,
right left,wrist and wst_toe2. which describe the poses of the PUMA. It should
be noted that since the redundant variables for this inverse function are the three
joint angles of the platform, these variables serve also to describe the pose of the
platform. Since each pose variable can assume three distinct values, the pose space

contains 27 different poses.

3.2.1.1 RightToLeft Arm Indicator

The CIRSSE arm has a link offset located on the shoulder of the Puma at-
tachment as described in figure 3.1 This shoulder offset leads to the definition of
left and right arm configurations. The riyht_left configuration variable is described
as being either left or right depending o1 which of ones arms is along the shoulder
offset when one is standing on the base of the PUMA and facing the end effector.

An example of LEFT and RIGHT arm configurations is shown in figure 3.4 The
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RIGHT LEFT

Figure 3.4: RIGHT and LEFT 7Arm poses

right_le ft descriptor is described by the [ollowing equation:

i

vl = A5 xcos(¢5) + A6 + ros(¢3 + ¢6) + DT * sin(qg5 + ¢6) =

rightle ft = sgn(rl) (3.13)

where r1 represents the distance from the primary elbow Pel to the wrist,

Puw relative to frame four. It should be noted that when the wrist is aligned with

Il

the primary elbow. the arm is in an alignment configuration and z1 is zero. In

this case, the variable rightlc ft is defanlted to the left configuration. Another

point of interest is that when right le f/ is zero, this signifies the PUMA’s shoulder

singularity.
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FLIP NO_FUIP

Figure 3.5: Wrist in FLIP and NO-FLIP poses

3.2.1.2 Wrist Indicator

The wrist of the PUMA attachment represents a spherical wrist. There are
three joints associated with the wrist; thus allowing the wrist to assume any orien-
tation within its joint constraints. Due 1o the placement of the three joints, there
are two possible solutions for each orientation. The first solution orients the wrist
with a positive joint eight while the second solution utilizes a negative joint eight.
These solutions are shown in figure 3.5 where a FLIP solution represents a negative
joint eight. The rrrist indicator is used to determine which solution is to be found

and is described by

wrist = sgn(g8) (3.14)

The point at which joint eight is zero is a singular point and is the PUMA

wrist singularity.
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Figure 3.6: Wrist ABOVE and BELOW Secondary elbow

3.2.1.3 Secondary Elbow Indicator

The PUMA s elbow can be either above or below its wrist for a given end-
effector position. These dual solutions allow for the existence of the pose variable,
wst_to_e2, which is one or negative one il 1he wrist is to the left or right of the line
adjoining the PUMAs shoulder to its wrist An example of these two configurations

is shown in figure 3.6. The wsf_to.e2 indicator is described by:

wsttoe2 = sgn(qh,, — qb) * sgn(qb — ¢6,2) (3.15)
@651 = 923445 deg
¢6s; = 2723445 deg

The pose variable wst_to 2 assunmes a value of zero when the wrist is aligned
! g

with the PUMA s elbow. This position is alxo known as the PUMA elbow singularity.
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E2_ABOVE_E!l E2_BIILOW_E!

F_‘igure 3.7: Secondary elbow ABOVE and BELOW Primary elbow

3.2.2 Puma-Platform pose variables

The pose space for the Puma-plaiform is described by five pose variables,
right_le ft. wrist. wst_toe2. ¢2_toel and ¢lbow. Since each one of these variables
can assume three distinct valucs. there are 729 poses in this pose space. It turns
out that there is some duplication of posc variable description between the Puma-
Positioner and the Puma-Platform. The description of the Puma-Platform’s pose
variables, right_lc ft. wrist and wst_to_e2 ix given in the previous section. These pose
variables only describe the PUMA section of the mani[;ulator. The pose variables
e2_toel and elhow describe théﬂdiﬂr’er(»nlr conﬁgurations of the platform and its

connection to the PUMA. These variables will now be described in greater detail.

3.2.2.1 Primary Elbow Indicator

The primary elbow can be to the right or left of the secondary elbow for any

position and orientation of the end effector. Due to the existence of these dual
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solutions, the pose variable, e2_to_el, describing the position of primary elbow was
necessary. The variable, e2_to_el, is one or negative one if the primary elbow is to
the left or right of the line adjoining the secondary elbow to the wrist. The two
link configurations imposed by this variable are displayed in figure 3.7. The pose

variable, e2_to_el. is described Dy:

e2_toel = sgn(g3 — 90) » sgn(270 — ¢5) (3.16)

Although the pose variable, e2_to_e!, describes the position of the primary
elbow with respect to the secondary élbow. it‘ is hgt ér;—indeﬁendent variable. Due to
the formulation of the redundant parameters, the variable he describes the position
of the primary elbow relative to the secondary elbow. This fact forces the

variable, e2_to_el, into a purely descriptive role. It can describe the config-
uration of the manipulator’s primary elbow. However, to place the manipulator
into a certain e2_to_el configuration, the variable he has to be above or below a

certain threshold value. This threshold value corresponds to the value of he when

‘the primary and secondary elbows are aligned and is described by:

rl = \JA5%(|Pw— Ps||? — D4?) + Da x (r12 — A52)  (3.17)
\/(2 x A5 % z1)2 — (212 + 452 — r12)?

hethr _

(3.18)

twzl?
e2_toel = sgn(he — he'™") (3.19)

3.2.2.2 Elbow Indicator

The position of the primary elbow is controlled by two joints, joints two and
three, which are aligned in such a manner as to cause the existence of two solutions

for each position of the primary elbow. These solutions are described by the pose
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Pel Pel

FLIP NO-FLIP

Figure 3.8: Primary elbow in FLIP and NO-FLIP poses

variable, elbow, which determines whether joint three is negative or not. An example
of these solutions is displayved in figure 3.3 where a FLIP solution indicates a negative

joint three. The variable ¢lbow is described by:

elbow = sgn(q3) (3.20)

where the point at which joint three is zero is an algorithmic singularity and
is described in chapter five. The pose variable elbow is another pose variable that
serves only a descriptive role in the inverse function. However, this is not due to an
overlap between the redundant task space and the pose space, as was the previous
case. Instead, this pose variable was dcfined inside the inverse function in order
to avoid the 180 degree joint shift that occurred whenever the algorithmic singular

point (¢3 = 0) was crossed. The pose variable elbow was defined internally as:
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elbow = sgn(Pel; * Psw; + Pel, x Psw,) (3.21)

and assumes the value of negative one whenever the primary elbow and wrist
are in different quadrants.

In summary. the forward kinematics provides the mapping from the joint space
of the CIRSSE manipulator to its task space. Its task space is described by a task
space vector which consists of a three dimensional positional vector and three orien-
tation vectors. Since the CIRSSE manipulator is a redundant (9 dof) manipulator,
the task space was augmented with a 3-dimensional redundant task space. This
augmentation ensured that each joint in the joint space was independently repre-
sented in the task space. The redundant task space was defined separately by each
one of the inverse functions, the Puma-Positioner and the Puma-Platform. The aug-
mented task space along with the necessary pose variables ensured that a one-to-one
and cyclic mapping was generated between the joint space and the augmented task

space. This one-to-one mapping proves to be crucial in the generation of the inverse

mapping, the inverse kinematics.
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CHAPTER 4
INVERSE KINEMATICS

The inverse kinematics can be described as the mapping from the task space of the
manipulator to its joint space. This mapping is the inverse of the mapping described

in (3.1) and takes the form of:

g= ") (4.1)

where ¢ is a {n x 1) joint vector,  a (m x 1) task vector and f~! is a non-
linear function. The above mapping generates a set of joint vectors for each task
vector. For non-redundant manipulators, the set of joint vectors that is generated is
discrete. Pose variables need to be specified in order to select a unique joint vector
from the set. However for redundant manipulators, an infinite set is generated by
this mapping. Even with the pose variables, an infinite number of joint vectors can
be chosen for each given task vector. As indicated in chapter three, the inverse
function solves this problem by determining an additional set of constraints that are
termed the redundant task space. These constraints along with the task vector and
pose variables allow one to select a unique joint vector from the infinite number of
joint vectors generated. Figure 4.1 describes a model of the CIRSSE manipulator
with its associated coordinate frames. The coordinate frames are defined under
the modified Denavit-Hartenberg representation which is described in the appendix.
The two inverse functions, the Puma-Positioner and Puma-Platform, were developed
based on this model. These inverse functions both utilize a redundant task space
and pose space, as described in chapter three, to generate the joint space vector.
The basic process is to request a task space vector, redundant task space vector and

pose variables from the user and to then generate the corresponding joint vector. In

27
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Figure 4.1: Model of CIRSSE manipulator with coordinate frames
. =
the ensuing sections, a detailed description will be given of the inverse mapping of
the inverse functions. the Puma-Positioner and the Puma-Platform. %
4.1 Puma-Positioner inverse function §
The Puma-Positioner models the nine dof CIRSSE manipulator, displayed =
“in figure 4.1, as a PUMA manipulator with a moving base. The position of the -
platform is specilied by the user through the configuration variables, ¢, ¢, and g¢s. %
This position along with the desired position and orientation of the end-effector
and the pose variables is then used to solve for the remaining six joints. The pose %
variables are described bhy:
%
_ | LEFT =
right lefi = (4.2) -
-1 RIGHT
=
=

il
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_ (1 NO-FLIP
wrist = (4.3)
\ -1  FLIP
(1 ABOVE
wsttoe2 = (4.4)
\ -1 BELOW

4.1.1 Calculation of joints 1 - 3

The values of joints one, two and three are just the values of the three con-
figuration variables specified by the user, ¢, ¢, and ¢g3. The position of the primary

elbow is then defined as:

A0 4 D * cos(gz) * sin(gs)
Pel = | g + D4 * sin(qz) * sin(q3) (4.5)
D2 + D4  cos(q3)

Once the position of the primary elbow is known, the task space vector can be
recomputed relative to the coordinate frame attached to the primary elbow. This
new task space vector along with the pose variables is used to compute joints four

through nine.

4.1.2 Calculation of joints 4 - 6

The first step is to calculate the task vector relative to frame three. This is

calculated by:

T = T{q. ¢ ) (4.6)

I, = Ip+T5 (4.7)
3 P3

3 = o 5 (4.8)

00 01
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Figure 4.2: Puma-Positioner: Calculation of joint 4

where T represents the task relative to frame zero and T2 represents the task
relative to frame three. This information is then used to calculate joints four, five

and six.

4.1.2.1 Joint 4

Refex'xjing to 7ﬁgﬁrre L2, joint four of the manipulator reflects the two pose
configurations. LEFT and RIGHT that the PUMA can assume. The solution is

obtained by a projection of the position vector Psw unto the X2 — Z2 plane.

r = /px?+ pz? (4.9)

ab = (4.10)
sin(qy) = sin(b-a) (4.11)
cos(qy) = cos(b—a) (4-12)
si,,(q;) = sin(=b-a) (4.13)
cos(q}) = cos(=b—a) (4.14)
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(LEFT, ABOVE) ' (RIGHT , BELOW)
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Figure 4.3: Puma-Positioner: Calculation of joints 5,6

Equations 1.11-4.14 can be combined by using the pose variable right_le ft to

solve for gq,.

_ —px* D6 + right Jeft « pz * ab
qq = tan™7( — -
pz* D6 + right_left * pr + ab

) (4.15)

4.1.2.2 Joints 5 and 6

Joints five and six of the manipulator reflect the multiple solutions associated
with the pose variables. right_le ft and s/ _to_e2. Referring to figure 4.3, joints five
and six are calculated by projecting the poxition vector Psw unto the X°—Y3 plane
and then using the pose descriptors that ave defined in (4.2-4.4). Joints five and six

are calculated by:

rl = \/ab'z + (=py = D4)? (4.16)
A3% + 1% - 1! -
CO‘(g) = D) * _{5 * J'l (4’1‘)
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Calculation of the PUMA’s wrist joints

L = cos?(g)
v1? + D4? — (ab’ + py?)
221+« DI

right_le ft « \/1 - cos®(a)
cos(g) * cos(a) + right_left  sin(g) * sin(a)

sin(yg) * cos(a) — right_left = cos(g) * sin(a)
sin(q¢s)
cos(gs)
A3t 4012 — )¢
2x A5 xrl

Tan™(

right_le ft « \/1 — cos?(p)
Fan=1 —sin(p) * 46 — cos(p) * DT
an

—cos(p) + A6 + sin(p) * DT

)

4.1.3 Calculation of the PUMA’s wrist joints 7 - 9

32

(4.18)
(4.19)
(4.20)
(4.21)
(4.22)

(4.23)
(4.24)
(4.25)

(4.26)

The PUMA's wrist joints and are nsed to place the end-effector into the de-

sired orientation. The desired orientation is described by the vectors n,s and g,

as described in figure 1.1. Referring to fignre 1.1, vector a represents the approach
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vector, vector s the sliding vector and n is the normal vector representing the cross

product of s and a. Using these orientation vectors and

Rg(q1q8) = | X° Y Z6] (4.27)

joints seven, eight and nine will now be solved.

4.1.3.1 Joint 7

Referring to figure 4.1, joint seven is defined as how much the wrist must rotate
in order for joint eight to align Z® with . Figure 4.4a describes the FLIP and NO-

FLIP configurations for the wrist where the solution for joint seven is defined by:

_ wristx(a© Z°)

¢r = tan wrist x (a © Xs)) (4.28)

4.1.3.2 Joint 8

Referring to figure 4.1, joint eight is defined as the amount of tilt that is
necessary in the wrist in order for Z® to le aligned with a. Figure 4.4b describes
the FLIP and NO-FLIP configurations for the wrist where the solution for joint

eight is defined by:

-y wrist x (a @ X7)

gs = tan

4.1.3.3 Joint 9

Referring to figure 4.1, joint nine is defined as the amount of rotation necessary
to align s with ¥, Figure 4.4c describes the FLIP and NO-FLIP configurations for

the wrist where the solution for joint nine is defined by:
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1, —uwrist * (0@ X8)

wrist * (0 ® Z8) ) (4.30)

g = tan”

4.2 Puma-Platform inverse function

 The Puma-Platform models the PUMA and platform as a nine joint manipula-
tor. The first six joints of the manipulator are used to position the end-effector and
place the links into some desired configuration. The constraints that define these
joints are the position vector and the three conﬁguration variables. The last three
joints are used to orient the end-effector and are defined by the three orientation
vectors n,s and ¢. These three joints are the PUMA’s wrist joints and are defined
in the previous section. The process for calculating the first six joints can be divided
into two steps. In the first step, joint four is set to zero and the remaining joints are
calculated. This step defines the unrotated position of the primary elbow, Pel. In
the second step, the primary elbow is rotated by theta radians and then joints two
through four are calculated. A detailed description of the calculation of the first six

joints using the position and configuration constraints will now be given.

4.2.1 Calculation of joints with joint four set to zero

Joints one through six are calculated with joint four set to zero. These joint
values correspond to a zero degree rotation of the primary elbow by theta. However,
since joints one, five and six are not influenced by theta, their values calculated in

this section represent their actual values.

4.2.1.1 Joint 1

Joint one takes the value of the configuration variable d1 and represents the
actual value of joint one since it's not affected by the configuration variables, he and

theta. It is described by:
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(LEFT) (RIGHT)

Figure 4.5: Puma-Platform: Calculation of joint 2 (Joint 4 = 0)

@ = dl (4.31)

4.2.1.2 Joint 2

Referring to figure L3, joint four ol the manipulator reflects the two pose
configurations, LEFT and RIGHT that the PUMA can assume. The solution is

obtained by a projection of the position vector Psw unto the X° — Y? plane.

ro= \Jpr?+py? (4.32)
ab = \r*= D6 (4.33)
sin(¢l) = sin(b-a) (4.34)
cos(gy) = cos(b—a) (4.35)
sin(q}) = sin(=b-—a) (4.36)

cos(gs) = cos(—b—a) (4.37)
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Figure 4.6: Puma-Platform: Calculation of joints 5,6

Equations 4.34--1.37 can be combined by using the pose variable right_le ft,

which is defined in (4.2) to solve for ¢,.

; _,(—pr* D6 + right le ft x py * ab
g2 = tan = -
& py x D6 + right_left  pz * ab

) (4.38)

4.2.1.3 Joints 5 and 6

Joints five and six of the manipulator reflect the multiple solutions associated
with the pose variables. right le ft and w~/_to_e2. Referring to figure 4.6, joints five
and six are calculated by projecting the position vector Psw unto the X0 2Z° plane

and then using the pose descriptors that are defined in (4.2-4.4). Joints five and six

are calculated by:

el = VA3 - he? + Vrl? - he? (4.39)
A3t 4 1t =)
cos(g) = VTR (4.40)
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Figure 4.7: Puma-Platform:Calculation of joint three (Joint 4 = 0)

stn{g)
cos{a)
stn(a)
cos(qs)
stn{qs)

s

cos(p)
sin{p)

s

4.2.1.4 Joint3

L = cos?(g)
1% + D4? = (ab’ + pz?)
2«21« D1

right_left = /1 — cos?¥(a)

cos(g) * cos(a) + right_left « sin(g) * sin(a)

sin{g) * cos(a) — right_left « cos(g) * sin{a)
I(m_l‘__sm(q,;)
COS(Q5)
A3 4+ 112 — r1?
2x A5l

right_le ft x /1 — cos?(p)
ran=14 —sin(p) * A6 — cos(p) * D7
mn -
‘ —cos(p) * A6 + sin(p) * D7

)

(4.41)
(4.42)
(4.43)
(4.44)
(4.45)

(4.46)
(4.47)
(4.48)

(4.49)

Referring to figure 4.7. joint three ix calculated with joint four set to zero by

projecting the position vector Psw into the X? — Z? plane. Joint three is defined

by:
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P? = R:xP%uw (4.50)
P22’ = A5 xcos(qs) + A6 x cos(gs + gs) + DT * sin(qs + ge) (4.51)

P2z = D4 — A3 *sin(gs) — A6 = sin(gs + gs) + D7 * cos(gs + gs) (4.52)
P2:'« P}, — P22« P,

P2x' » P} + P2 x sz) (4.53)

g3 = tan”l(

4.2.2 Rotation of primary elbow by configuration variable theta

The position of the unrotated primary elbow can be calculated by:

D4 * cos(gz) * sin(gs)
Pe' = | D4+ sin(gy) * sin(gs) (4.54)
DA x cos(q3)

Due to the PUMA's shoulder offset. the position of the unrotated primary
elbow doesn’t correspond to the zero po.sﬁtjon for theta. In order to compensate
forrthis offset, the 1'(73tia,tricr>1717indu:ced By £]1is offset has to be subtracted from theta.
This subtraction will rotate the primary elbow by the desired amount. The primary

elbow rotation induced by the shoulder offset is termed theta’ and is calculated as

follows:

Psw

Faal (4.55)

-y

:; nri+r:;,i
:Cn = s
:; )‘l.}:.‘:'«i-n_u2

0
Pe' ¢ n
| Pe’ € n
1YL= (:0n O peCn’
:Cn QO peCn

(4.56)

peC'n (4.57)

thete' = tan~ (4.58)
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Figure 4.8: Evaluating the pose variable elbow

Once theta’ is calculated. the new value for theta becomes

theta = theta — thetd (4.59)

This value lor theta is then used to rotate the primary elbow around n. The

new rotated position of the primary elbow is determined by:

Pe = n i P+ (1 —cos(theta)) + ' * cos(theta) + n @ Pe’ * sin(theta)

(4.60)

4.2.3 Calculation of Actual joint values

Once Pe is calculated. the next step is to calculate the pose variable elbow.
This pose variable determines whether joint three is positive or negative. Referring
to figure 4.8, it should be noted that thix manipulator’s configuration reflects the

case when the position of the primary elbow and the position of the end-effector are
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Figure 4.9: Puma-Platform:Calculation of joints 2,3 (Actual values)

in two different quadrants. In this case. juint three assumes a negative value and
the pose variable ¢/bow is set to negative one. The pose variable elbow is described

by:

elhow = sgﬁ(P?,? p'c +rlsey . py) (4.61)

Given the position of the rotated primary elbow Pe and the value of the
pose variable, elliow. the actual values for joints two, three and four can now be

calculated.
4.2.3.1 Joint 2

Referring to figure 1.9a, joint two is calculated by:

lbow * Pe,

1z = tan-'(zlbow*Pe
z

1
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Figure 4.10: Puma-Platform:Calculation of joint 4 (Actual value)

4.2.3.2 Joint 3

Referring to figure -1.9b, joint three is calculated by:

. elhow * ,/Pei + Pe:) (4 63)

g = lan™ 2
e:

4.2.3.3 Joint 4

Referring to figure 4.10. joint four i~ calculated by mapping Pew’ and Pew
into the X3 — Z% plane. The vector Pei’ represents the vector from the unrotated
primary elbow to the wrist and Pew represents the vector from the rotated primary

elbow to the wrist. Joint four is defined by:

Pew = Pu — DixPe— P (4.64)

Plew = R)* Pleu (4.65)



Pdew

A5 * cos(qs) + A6 * cos(qs + ¢s) + DT * sin(gs + gs)

0
D6

42

(4.66)

|

Plew ® Pdew'
cos(t) = [l < TPew] (467

sin(qy) = sgn(|PPew O Plew'|,) x \/1 — cos*(gqq) (4.68)

Qe

ta

n~1

sin
cos

(44))

(Q4)

(4.69)

In summary. the inverse kinematics generates the mapping from the task space

to the joint space.

Two inverse functions, the Puma-Positioner and the Puma-

Platform, were generated to provide mappings from the augmented task space,

composed of the redundant task space and Cartesian task space, to the joint space.

These mappings produce unique joint vectors through the definition of the pose

variables. However, it is not always possible to find a unique solution. There exists

certain points within the manipulator’s workspace where a unique solution doesn’t

exist. There points are termed singular points and are the subject of the next

chapter.
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CHAPTER 5
EFFECT OF INVERSE FUNCTIONS ON MANIPULATOR

SINGULARITIES

As a manipulator traverses its workspace, there exists certain points where the ma-
nipulator loses some degrees of freedom in its motion. These points are termed sin-
gular points. Singular points are generally defined as points in the joint space where
the manipulator loses the freedom to travel instantaneously in any direction. This
loss of motion is reflected in the Jacobian which becomes rank deficient at singular
points. From a different perspective, at a singular point the inverse Jacobian map-
ping produces infinite joint velocities for hounded task velocities. Singular points
can be further characterized by being placed in one of two categories, boundary
singularities or internal singularities. Boundary singularities exist on the manip-
ulator’s boundaries and define the case when the manipulator is at its maximum
reach. In this case, the manipulator is fully extended and no joint motion can cause
the end-effector to extend out any further. Internal singularities are singularities
internal to the manipulator’s workspace.

Singular points are obviously of great importance to the user. They define
those areas of the manipulator’s workspace where motors could be burnt out due to
the generation of large joint speeds and torques. It would be satisfying to be able to
generate a workspace that is free of singularities. For non-redundant manipulators,
this is impossible. All non-redundant manipulators have singular regions in their
workspace and the best that can be done is to locate and avoid them. However,
redundant manipulators offer the user some freedom in terms of the singular regions.
Redundant manipulators all have singular regions. However, an inverse function can
be defined for a redundant manipulator that will some effect on the singular regions.

Redundant manipulators have an infinite number of joint vectors associated with

£3



each task vector. Inverse functions determine a unique joint vector that is associated
with each fixed task vector. Since inverse functions determine the joint vectors, they
can be used to avoid singular points. However, the tradeoff is that inverse functions
generally introduce a third type of singular point. This singular point is termed an
algorithmic singularity and indicates the case when the kinematic functions that are
defined for the inverse function lose rank. [n the next couple of sections, the singular
regions of the CIRSSE manipulator will be presented. Also, the effect of the two
inverse functions. the V'Prlj{ma-Positioner and the Pﬁﬁia-Platform, on the workspace

and singularities of the CIRSSE manipulator will be discussed.

5.1 Characterization of the CIRSSE manipulator’s singularities

The CIRSSE manipulator consists of the six dof PUMA atop a three dof plat-
form. In order to evaluate the singularities of this manipulator, the Jacobian was
calculated. In order to simplify the form of this Jacobian, the Jacobian matrix of
frame seven relative to frame six J? was calculated. The calculations of these Jaco-
bians are documented in the appendix. The singularities of the CIRSSE manipulator
occur at therpcrorints; where the Jacobian. J¥, is rank deficient. Due to the structure
of this manipulator, a necessary condition for it to be in a singular configuration is
for the PUMA to be in a singular configuration. These singular configurations of

the PUMA are defined as:

o PUMA wrist singularity: This is an internal singular point that occurs when

Z7 and Z°® are aligned or q3 = 0.

o PUMA elbow singularity: This is a boundary singularity that occurs when the

elbow is fully extended or g5 = tan"(g—;i: .

o PUMA shoulder singularity: This i~ an internal singular point that occurs

when the wrist is aligned with the PUMA’s shoulder. This is mathematically
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Figure 5.1: Singular configurations of CIRSSE manipulator

defined as when 45 = cos(qs) + A6 = c0s(qs + g6) + DT * sin(gs + ¢g¢) = 0.

Figure 5.1 provides sample singular configurations for the CIRSSE manipulator

and indicates the possible directions of motion.

5.2 The inverse functions and the workspace singularities

The inverse functions of a manipulator are distinguished from one another by
their parameterization of the redundant task space or their kinematic functions.
The kinematic functions of the Puma-Poxitioner are identity functions that sim-
ply repeat the first three joints. ¢,.¢; and ;. Based on this parameterization, the
Puma-Positioner has no effect on the CIRSSE manipulator’s workspace or its sin-
gular points. With this para.meteri.zatio”. any possible joint configuration within
the reachable joint space can he used. 'I'he Puma-Platform has three kinematic
functions, d1.he and theta that parameicrize the redundant task space. This pa-

rameterization has two notable effects ou the CIRSSE manipulator. First of all,
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it defines an unreachable region within the manipulator’s workspace based on the
PUMA’s shoulder offset. Due to joint four being defined by theta in the Puma-
Platform, the end-effector is unable to reach inside a circle of radius D6 that’s
centered on link three. The second effect of the Puma-Platform is the introduction
of two algorithmic singularities. The augmented Jacobian, as defined in the ap-
pendix, is composed of the task and redundant task space velocities. The case when
the task and redundant task velocities become dependent upon each other and the
augmented Jacobian becomes rank deficient is termed an algorithmic singularity.

The algorithmic singularities are defined as:

e Primary elbow singularity: The primary elbow is directly above the manip-
ulator’s shoulder and no rotation by theta can occur. This is represented by

joint three going to zero.

e Secondary elbow singularity: The wrist is close to the primary elbow and ke

is at its maximum value. This occurs when he = A5 or ¢6 = 267.67 deg.

It should be noted that the Secondary elbow singularity occurs outside of joint
six’s joint range. So this singular point is never seen.

In summary, since the inverse functions control the joint configurations for a
redundant manipulator, they are capable of altering the manipulator’s workspace
and singular points. However, one drawback is that the inverse functions tend to
introduce algorithmic singular points. The inverse functions, the Puma-Positioner
and the Puma-Platform, didn’t have a great influence on the manipulator’s singu-
larities. The Puma-Platform actually introduced two more algorithmic singularities.
However, an inverse function is genéral]y limnited to the task its designed for. These
two inverse functions were not designed to avoid singular points. Some tasks for

which these inverse functions were designed for, such as joint limit avoidance for the

Puma-Positioner. will now be discussed.
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CHAPTER 6
APPLICATION OF PUMA-POSITIONER TO JOINT LIMIT

AVOIDANCE

Robotic manipulators can be viewed as a set of links each interconnected by a
joint. Each joint, whether revolute or prismatic, is capable of going through a
certain range of motion. The endpoints of this range are termed the joint limits
for each joint. Based on these joint limits, the joint space of a manipulator can
be divided into a reachable and unreachable subspace. The reachable joint space
consists of all the joint vectors whose components reside within their joint limits.
Joint limits generally pose a significant problem to the task planner. For instance,
given a planned Cartesian path, there is no obvious method to ensure that the
corresponding joint path resides within the reachable joint space. If the configuration
of the links is not an important issue to the user, then a solution to the joint limit
problem presents itself. This solution consists of varying the link configurations for
a fixed task vector until a reachable joint vector is produced. For a non-redundant
manipulator, there only exists a discrete number of link configurations, termed poses,
for a fixed task vector. Due to the existence of only a small number of poses, this
solution would not be very effective for a non-redundant manipulator. However,
the CIRSSE manipulator is a redundant manipulator with three extra dofs. By
using the redundant task space and the pose variables, an infinite number of link
configurations can be generated for a fixed task vector. A solution to the joint limit
problem for the CIRSSE manipulator is hereby presented that augments the Puma-
Positioner inverse function with a decision algorithm. This algorithm generates the
redundant task vector, q;,¢; and ¢z based upon certain predefined criteria. This

criteria is enumerated as follows:

47
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o The task vector constraints, position and orientation of the end-effector ,must
be met. The position constraints have the higher priority and are the first to

be met.

o The resultant joint vector must reside in the reachable joint space. There are
some cases in which the resultant joint vector is in the unreachable joint space.
In this case. a solution is found and termed close that consists of clipping the

joints at their joint limits.

o The final criteria is to minimize flipping the PUMA’s pose during path traver-
sal. Every time the PUMA'’s pose is flipped, the resultant joint vector deviates
significantly from the previous joint values. This doesn’t allow for a smooth
traversal of a given Cartesian path. The PUMA’s pose is flipped only when

it’s the only solution to meeting the previous constraints.

To summarize, ther jqint limit avoidance routine can be broken down into a
series of steps. Given the task vector, three user defined control variables and the
PUMA’s pose, the decision algorithm generates a set of Puma-Positioner configura-
tion variables and the PUMA’s pose variables. These variables serve to satisfy the
previously defined criteria. These pose and configuration variables are then used
in conjunction with the task vector by the Puma-Positioner to generate the corre-
sponding joint vector. A thorough description of the decision algorithm will now be

given.

6.1 Definition of the decision algorithm

The decision algorithm determines the values of the redundant task vector,
(91,92, ¢a) and the PUMA's pose, right_le ft, wrist and wst_toe2. In order to pro-
duce these parameters,some simplifications were made. The manipulator’s link con-

figurations were restricted to those displayed in figures 6.3-6.4. Also, joint four of
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Figure 6.1: Generating configuration variable ¢;

the manipulator was fixed at zero to ensure that the links were always in the plane
perpendicular to the X° — Y0 plane. This is explained in greater detail in the sec-
tion on meeting the orientation constraints. The configuration and pose variables

are now defined to meet the predefined coustraints.

6.1.1 Configuration variable ¢; (Joint 1)

Joint one is a linear joint and corresponds to a translation of the entire ma-
nipulatorralong the linear rails. Since thi~ joint moves the entire manipulator, its
motion is restricted and controlled by the user. There are two cases for which-joint
one m’otio'n is genoré.ted. Movement is initiated if the desired position is outside the
manipulator’s reach or if the desired position is less than some user defined thresh-

old. If the desired position is outside the manipulator’s reach and motion along the

linear rails would place the manipulator within reach of the desired position, this

motion is taken. Referring to figure G.1. there exists a range of values for q; that
would allow the manipulator to reach the target.The two positions, labeled P1 and

P2, displayed in this figure indicate the end-points of this range. The configuration
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variable ¢, is defined by:

@ = ¢+ py — sgn(py) *2 (0.5 — ctril) * \/r'ma:c2 - (pz? + pz?) (6.1)

where rmax is defined in figure 6.2 and table 6.1 and ctrll is a user defined
variable that varies between zero and one. This variable determines how far the
platform will move in order to reach a point outside its current workspace. A value
of zero defines the smallest ;iﬁistance that the platform can move and still reach the
target. If the target is outside the manipulator’s reach even with motion along the
linear rails, then the manipulator is brought as close as possible to the target. This
point is defined as having the manipulator being directly in front of the target or at
the closest joint one limit. In the second case, a minimum threshold is determined

by a second control variable, ctr{2. This variable defines the threshold py, by:

Dinr = pmuin + ctrl2x (pmaz — pmin) (6.2)

where pmin = 2m — rl and pmar = rmaz are manipulator defined values

that are defined in figure 6.2 and table 6.1. Joint one is then defined as

@ = ¢ +py+\/ph — (pz? + pz?) (6.3)

6.1.2 Configuration variable ¢; (Joint 2)

Joint two places the end-effector in tlhe X® — Y? plane. As in (4.38), joint two

is defined by:

—px * D6 + right_left  py * p1'2+py2—D62,

(6.4)
py * D6 + right e ft x pz * \/p12 +py? - Ds*

g = tan”
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Figure 6.2: Joint limit avoidance: Distance constraints

rmax | sqrt(D4- + (A5 + R1)° — 2% D4 « (A5 + R1) * cos(g3maz — qp))

x1b | sqrt(A57 + R1* — 2% A5 x Rl = cos(¢6maz + qrl — 7))

p6b | sqr t((D4 + 457+ RIT =2+ (D1 + A5) = Rl % cos(gbmaz + qrl — «))
xla | sqrt(A3°+ R1* —2x 4)*}?1 * cos(gbmin + qrl))

p6b | sqri((D4 + A5)2 + R1- =2 (D1 + A5)x Rl * cos(q6mzn + qrl))
x2m | sqrt(D4° + 45° =2 % D4 x -b * cm(q)max))

p5m | sqri(D4° + (A3 + R1)° — 2% D4 « (A3 + Rl1) * cos(g3maz))

Table 6.1: Distance constraints

51

If this calculated value is outside joint two’s limits then the right_left pose

is flipped aud joint two is recalculated.

Due to the definition of the right_left

ose, joint two can effectively cover the entire X° — Y plane by flipping this pose
p J s P y fipping P

whenever joint two is outside its limits.

Joint two actually covers a donut centered

on the X% — Y0 plane. The outer radius is escribed by rmaz while the inner radius

is defined by the length of the PUMA’s shoulder offset, D6.
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Figure 6.3: Range of ¢n angles for wrist ABOVE éecondary elbow

6.1.3 Configuration variable ¢; (Joint 3)

Joint three and the wst_fo_e2 pose are used to meet the vertical position
constraint and the orientation constraini~. Initially, the current wst_to.e2 pose
is u;sed to determine the range of joint three angles that would match the position
constraints. Tfliéi'a.nge is found then the «st_to_e2 pose is switched and a new range
of joint three angles is found. If the orientation constraints fall within the joint three
range, a joint three value is selected through the user defined control variable, ctri3.
However, if the orientation constraints lall outside the joint three range and the
wst.to.e2 pose hasn't already been switched, then the wst.to_e2 pose is switched. If
after switching the wst_to_e?2 pose, the position and orientation constraints still can’t
be met. then the joints are clipped at their limits and the joint vector is returned
with the appropriate status. A detailed description will now be given of how the

joint three range is calculated.
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Figure 6.4: Range of ¢n angles for wrist BELOW secondary elbow

6.1.3.1 Meeting the position constraints

Figure 6.2 describes standard link configurations of the last three links with
joint four set to zero and the PUMA's shoulder offset parallel to the X° — Y? plane.
Since , as seen in this figure. the angle ¢n relates directly to the end-effector’s
orientation. the angles that meet the distance constraints are expressed in gn instead
of in g3. The position constraints can be expanded into a set of distance constraints
that are a factor of the link lengths and the joint limits. These distance constraints
are described in figure 6.2 and tabulated in table 6.1. These constraints and the
wst_to_e2 pose describe the range of gn angles generated.

Figure 6.3 describes the configurations that the links are allowed to be in for
the case where the wrist is above the sccondary elbow. These configurations are
placed in groups based ou the distance p of the wrist from the shoulder. Each group

indicates a range of ¢n angles where gn varies from gnmn to gnmz. Based upon
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Figure 6.5: Description of orientation coordinate frame

the distance p. a range of ¢n angles is generated. It should be noted that if p is less
than p5m, no range of ¢n angles can be generated. This means that for p less than
p5m, the wrist can’'t be placed above the ~econdary elbow.

Figure 6.4 describes the configurations that the links are allowed to be in for
the case where the wrist is below the secondary elbow. As in the previous wst._toe2
pose, the range of ¢qn angk's generated ix based on the distance p. This wst.to_e2
posé xs more flexible than the previous pose. If a position can’t be reached in this
pf»)sg‘t»heAn a clipped joint solution is generated. As seen in figure 6.4, such a case

occurs when p is less than r2m —rl.

6.1.3.2 Meeting the orientation constraints

~ Once a range of qn angles is genvrnledﬂthat meets the position constraints,
the orientation constraints are therm applicd to this range. The orientation of this
manipulator is defined by the last three joints of the manipulator, ¢7,¢s and go.
The orientation constraints are based upon the joint limits of these joints. Joint

nine has a joint range that exceeds 360 dcgrees. This indicates that a solution can
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Figure 6.6: Description of orientation constraints

always be found that resides within the joint limits of jo-int nine. Joint seven has
a joint range that’s less than 360 degrees. However, by switching the wrist pose
whenever joint seven is out of range, a solution can still be generated that’s within
joint seven’s joini range. However. if the wrist pose is flipped, this means that any
objects in the end-effector’s grasp will be fHipped also. A status flag is set to alert the
user when this occurs. The orientation constraints are thus based on joint eighth’s
joint limits. The approach vector « is determined relative to the coordinate system
defined in figure 6.3. It should be noted rhat joint four was set to zero to ensure
that the X™ — Y™ plane was always parallel to the X® — Y° plane. Once the vector

aﬂ

is calculated then. as displaved in fignre 6.6a, two vectors ,amin"™ and amaz™
are calculated based on joint eighth’s limit. These vectors determine the section of
the X" — Z" that the end-effector has to he in so that the joint solution generated

is within joint eighth’s limits. Three caxes are displayed in figures 6.6b-6.6d. In

the first case (Figure 6.Gb). the entire ¢n range meets the orientation constraints.
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In the second case (Figure 6.6c), one endpoint of the gn range doesn’t meet the
constraints. In this case, a new gn endpoint is defined as the closest orientation
constraint . The last case (Figure 6.6d) shows the entire gn range not meeting the
orientation constraints. In this case, the ¢n range is reduced to the endpoint that’s
closest to an orientation constraint and a status flag is set. Once a range of ¢n

angles is generated, one of them is selected through

qn = qgnmn + ctrl3 = (gqnmz — gnmn) (6.5)

where ctrl3 is a user defined control variable that varies between zero and
one. Given the configuration variables, ¢;.q; and g3, the PUMA’s pose and the task
vector, the Puma-Positioner algorithm is used to calculate the corresponding joint
vector.

In Summary, the joint limit avoidance scheme is defined by augmenting the
Purna—Positioher with a decision algorithm. This decision algorithm determines the
configuration variables and the PUMA’s pose based upon certain predefined criteria.
The Puma-Positioner then uses the configuration variables , the PUMA’s pose and
the task vector to generate a reachable joint vector. This algorithm is typical of the
approach taken towards inverse functions in this thesis. The algorithm is not generic
and can’t be easily applied to all manipulators. However, due to its specialization,
it’s both fast and efficient. These are traits that are especially appreciated in the

obstacle avoidance scheme that will now be discussed.
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CHAPTER 7
APPLICATION OF THE PUMA-PLATFORM TO OBSTACLE

AVOIDANCE

The CIRSSE robotic facilities consists of two nine dof manipulators operating along
a linear rail. Each manipulator operates in an environment that’ s filled with po-
tential obstacles. Collision avoidance of the end-effector can be implemented by
careful planning and is generally a task of the task planner. However, since these
manipulators are redundant, the position of the end-effector doesn’t give adequate
information about the location of the links. This means that although the end-
effector's path can be pla;nned so that it doesn’t collide with any obstacles, there is
no guarantee that the links will not collide with some obstacle. A collision avoidance
scheme is desired that would ensure that the internal links of the manipulator don’t
collide with each other or other obstacles in the workspace. Two criteria that are
necessary for the collision avoidance scheme are that its fast and that it operates in
the null-space of the end-effector. The first criteria is needed to ensure that the ob-
stacle avoidance scheme can be implemented on-line and can respond fast enough to
an obstacle entering the manipulator’s workspace. The second criteria is necessary
so that the generated internal link motion doesn’t affect the the end-effector and
cause it to deviate from its path. The collision avoidance scheme that is presented
in this thesis is based on the Puma-Platform inverse function. The redundant task
space or secondary task space parameterizes the internal link motion through the
configuration variables, d1, he and thets. This parameterization resolves the link
configurations into three disjoint sefs that are each controlled by one of the configu-
ration variables. Obstacles in the workspace induce motion in one of these sets and
thus cause the appropriate configuration variable to be altered. The basic algorithm

can be dissolved into a series of steps which will now be defined.
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~ OBSTACLE AVOIDANCE ALGORITHM:

e STEP 1: The current joirrxtrangles are used to calculate the manipulator’s
present redundant configuration. A coordinate system is defined by the cal-
culated configuration parameters and attached to the manipulator’s links. A

~ set of distances d;; are then calculared relative to this coordinate system. The

distance d;; represents the distance from link i to obstacle k.

e STEP 2: Each link has a radially decaying force field surrounding it. The
intersection of an obstacle with this field determines the amount of force being
exerted by this obstacle on the link. This force is used to define the desired

7 increase in d;, éd;.. The desired distance dix = d;i + 6d;i is rnapped into the

appropriate configuration variables.

e STEP 3: Once the new cbnﬁgurrétti(m variables are found, the Puma-Platform
inverse function is used to determine the corresponding joint angles. The ma-

nipulator’s links are moved to this new configuration and the process repeats

itself.

This obstacle avoidance scheme is a process that relies solely on information

obtained at each time k. No past information or estimated future information is

used. At each time k, a snapshot of the manipulator and its workspace is taken.

Based on the information contained in this snapshot, the links are reconfigured to
avoid any obstacles. In the following sections, the various components of the obstacle
avoida.n;:e algorithm will be discussed. A description of the modeling process will
be given. The generation of the closest point of contact between the models will
be covered. Also. the mathematically defined force fields assigned to each link will
be discussed. Finally, a descriptrion of the mapping from the distances d;; to the

configuration variables will be given.
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Figure 7.1: Link and Obstacle model

7.1 Link and Obstacle modeling

Both the links and the obstacles are modeled with a simple convex structure.
This structure has the form of a cylinder with varying radii where each end is capped
by a variable height cone. The data structure that defines this structure takes the

form of

sruct = | PL Rl 1l 11 P2 R2 r2 I2 (7.1)

where Pi represents the position of one end of the cylinder, ri is the radius of
the cylinder at that end. /i the height of the cone attached at that end and [ is the
distance from the center of the cylinder 1o its end. A description of the different

forms this structure can take is given in ligure 7.1

7.2 Generating the closest point of contact

The last three links and the link offsct are all mapped into a plane that passes

through the position vector P~w and the primary elbow Pel. This plane rotates
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Figure 7.2: Description of rotation matrix R(rn,theta)
=
around the vector Pu as the primary elbow Pel is rotated by theta around Psw.
Figure 7.2 shows this plane and indicates the rotational matrix, R(n,theta), that f
describes to this plane. This matrix is described by: B
-
nixV+C poxn,xV—n, xS ny*n,*V+4n,*5 =
-
R(n,theta) = nxn, xV 4+ n. x5 ndxV4C nyxn,*V —nsxS
nexn.xV—n, xS v, en.xV4n.x§ n?xV+C ?
(' = cos(theta)
S = sin{theta) =
V' = | -~ cos(theta) —
Psw -
= (7.2)
(| Pswel| _
The rotational matrix R{n.theta) describes the coordinate frame (X" — Y™ — =
Z™) that, as described in figure 7.2. is attached to the vertical plane. This coordinate =
-
frame parameterizes the link motion into the motion that occurs in the plane and
the motion that rotates the plane around Psw. Each obstacle’s position is found ;
=

mi i
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Figure 7.3: Generation of model based closest point of contact

relative to this coordinate frame and determines the obstacle’s inﬂuénce on the two
parameterized link motiouns. Figure 7.3 gives an example of an obstacle relative to
the coordinate frame attached 1o the links. The links and obstacles are all modeled
with the previously defined structure. Referring to figure 7.3, it can be seen that
three pieces of information arce extracted from each link and obstacle pair. This
information consists of three vectors, Pe. /’ni and Pn. These vectors are defined as

follows:

e Pc: The closest distance hetween the link and the obstacle.

e Pni: The vector from the center of mass of the link, labeled cm, to the closest

point on the obstacle. labeled ¢.

e Pn: The distance from the manipulator’s shoulder Ps to the closest point on

the obstacle.

These three vectors. Pc. Pni and Pu are used by the obstacle avoidance algo-

rithm to generate the configuration variables. The code that generates these vectors
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is kept separate from the main algorithm. This ensures program modularity and

allows the user to change the model description.

7.3 Generation of force fields

Each link has a mathematically defined decaying field assigned to it. The
point of intersection of the obstacle with a link’s field determines how much force
is being applied to the link. This force determines the change in distance, éd;x that
link i will undergo to ensure that the new (lista;;lce on link i to obstacle k is equal to

dix = di + 8d;.. The change in distance is defined by:

1

M = ———— ]
A VAP (7.3)
[\’0 * E
Sl = —oxfi .
G = T (7:4)

where H; and W; are link defined constants, F; represents the maximum al-

lowed 6d;; for link i and ;. and d!, represent two perpendicular components of the

vector from link i to obstacle k.

7.4 Assignment of the Configuration variables

The redundant task space is subdivided into three separate subspaces, each
described by one of the configuration variables, d1, he or theta. Each one of the
configuration variables describes a distinct type of internal link motion. The config-
uration variable d1 describes the motion corresponding to a fixed end-effector with
the platform translating along the linear rails. The variable he describes the motion
of links three, four and five in the vertical plane that passes through the position
vector Psw and the primary elbow Pel. as described in figure 7.2. Finally, the

variable theta describes the motion of the plane containing the last three links as
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Figure 7.4: Obstacle Avoidance: Definition of dl

that plane rotates around the position vecior Psw. This is also described in figure

7.2. The assignment of each configuration variable will now be described.

7.4.1 Assignment of d!

The configuration variable d1 deals with the translation of the platform’s base.
Movement of the platform is only initiated when an obstacle comes into contact
with the force field surrounding links one and two, as described in figure 7.4. The

assignment of d1;; then becomes

(“ik = dll-,l,; - sgn(d,-k) * 5d{k (75)

where d;; represents the component ol the vector from link i to obstacle k that’s

parallel to Y0 and dl;; represents the response of links one and two to obstacle k.
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Figure 7.5: Obstacle Avoidance: Definition of he (Link 3)

7.4.2 Assignment of /e

The configuration variable ke dearlsr with the motion of the links in the per-
pendicular plane described in figure 7.2. Motion is initiated through the variable ke
whenever an obstacle comes into contact with the force field surrounding links three,
four or five. The magnitude of this motion is determined by the distance from the
obstacles to the links relative to ther cooﬂlinate frame, (X" = Y™ — Z"). Each of the
links generates a value for he based on the effect of the obstacle on that link. These

values for he are later resolved into one value in the conflict resolution algorithm.

7.4.2.1 Linki=3

Referring to figure 7.3. hey is defined by:

d, = ([,';,.-F(Sd,'k (76)

la = P2+ Pui? (7.7)
q3a = fan"(%) (7.8)
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g3 = q3a+ sgn(dy) « tctn‘l(—Tjt—E) (7.9)
ik
sin(ql)
Pe = 0 (7.10)
cos(q3)
rl = ||Psw’ = Pel| (7.11)
heay = \ﬁ: LA ;*(21122 rAY o) (7.12)

where hes, represents the reaction of link 3 to obstacle k.

7.4.2.2 Linki=4

Referring to figure 7.6. the value of /¢ calculated for this link is based on which
end of the link the obstacle is closer to. T'lis is represented through the calculation

of ra and rb. which are defined by

ra = \/Pni2 + (Pnii +0.5 % A5)? (7.13)



= \ﬁ’ni;? + (0.5 A5 — Pnii)?

If ra is less than rb then hey is calculated by:

Tk
la

q3a
cos(qa)

qa

q3

rl

h€4k

ra + 6d;;

tan—1( conlqa)

g3a + sgn(¢3p — q3a) * qa
stn{q3)
0
cos(¢3)
[[Psw’ — Pe]|

\ﬁz x A5 % 11)? — (712 + A5? — r12)?

4 % x]1?

otherwise hey is calculated by:

rbix
Lb
{b

rb + éd;i
Pn' — Psuw’

I|Lé]]
-Lh,
T
I +r1? - rb},
2xlbxrl
1 — cos?(gb)
co~(gb)
q3h + sgn(qnp — qnb) * ¢b

tan~(

tan—1(
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Figure 7.7: Obstacle Avoidance: Definition of he (Link 5)

sin(q3)

Pe 0

cos(q3)
vl = ||[Psu’ — Pe

\/(2 x A5+ r1)? = (212 + A52 — r12)2
/I(-_|k =
4712

where hey, represents the response ol link 4 obstacle k.

7.4.2.3 Link 5

Referring to figure 7.7, hesy is defined by:

dik = (l,‘k + 5(111:
Lh = Pn')y— Psu’

b = |ILb|

-L!
qnb = tan™Y( LLb(,‘(Bl))

67

(7.31)

(7.32)

(7.33)

(7.34)
(7.35)
(7.36)

(1.37)



68

. -1

gn = qnb+sgn(dy) xtan™( e d'fk) (7.38)
sin(q3)

Pe = 0 (7.39)
cos(q3)

vl = ||Psw’ = Pe (7.40)

hesy = \/(-’*.45*.»-|,~-;5211’2+Ao2—r12)’ (7.41)

where hes, represents the respouse ol link 5 to obstacle k.

7.4.3 Assignment of fheta

The configuration variable theta deals with the rotation of the plane containing
links three, four and five. around the vertor from the shoulder to the wrist of the
manipulator. Each obstacle in the workspace affects each link differently and thus
has a different effect on the plane containing the links. The effect of the obstacles

on the plane is shown in figure 7.8 and i+ described by:

Wil

T

[ | mi Eil Wm0 e g owmE om0 om0 m mI W



69

(l,‘k = dz’k + Sdik (742)

la = /Pni2+ Pn? (7.43)

B30 = tan'l(l;zz) (7.44)
Py = laxsin(q3c —qp) (7.45)

r o= \/[73711';!7 + Py? (7.46)

alf = tan"l(-—dik———) (7.47)

r? — d?k

bet = tan'l(l—P;Tl‘"-‘-) (7.48)
thetay = thetagy+ sgn(Pni(l,1)* (alf — bet) (7.49)

where theta;. rotates the perpendicular plane the desired distance dy away

from the obstacles.

7.5 Resolving obstacle conflicts

The group of configuration variables (dl;, hey, theta;;) indicate the individ-
ual responses of each link to each obstacle. This group is resolved into one set of
configuration variables (dl. ke, theta) by a conflict resolution algorithm. This al-
gorithm utilizes a simplistic approach by choosing from the group of configuration
variables the ones that move the links the furthest away from the obstacles. If two
opposing values are generated for one configuration value, the midpoint between
these values is chosen as the magnitude of the configuration variable. Once the
configuration variables are obtained, the final step of the algorithm is implemented
and the corresponding joint vector is generated.

In summary. the obstacle avoidance scheme relies only on the information
obtained at each time k. This information. which consists of the link and obstacle

locations, is used to generate the new configuration for the links to be placed in.
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The resultant link motion is generated in the null-space of the end-effector and
serves to maximize the distance between the links and the obstacles. This obstacle
avoidance algorithm, as is the case for the joint limit avoidance algorithm, is not a
generic algorithm. It can’t be easily applied to other manipulators. However, this
specialization lends it speed and efficiency. The results from testing and simulating

the obstacle avoidance and joint limit avoidance algorithms and the inverse functions

will now be presented.
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CHAPTER 8
TEST AND SIMULATION RESULTS

The results produced by this thesis can be divided into two categories, the test results
for the inverse functions and the simulation results for the joint limit avoidance and
obstacle avoidance routines.

The inverse functions, the Puma-Positioner and the Puma-Platform, were both
implemented in C. Since these inverse functions generated one-to-one mappings
between the joint space and augmented task space of the CIRSSE manipulator, the

following testing procedure was used.

TESTING PROCEDURE:

¢ The manipulator’s joint space was sampled and an appropriate joint vector

was selected.

o The augmented task vector was calculated as a function of this joint vector.
The augmented task vector is comprised of the Cartesian task vector and the

redundant task vector.

e The joint vector was used to calculate the manipulator’s pose. This pose and
the augmented task vector was then used by the inverse function to generate

the corresponding joint vector.

e This calculated joint vector was compared with the sampled joint vector

through the use of a suitable tolerance.

Table 8.1 swnmarizes the results of running this testing procedure on the
two inverse functions. The joint range category of the table indicates whether the
entire joint range was sampled or a specific range around a singularity was sampled.

It should be noted that around the singular regions the tolerance level had to be

7l



Toverse functions | Joint Range | lterations | Errors | Tolerance (deg)
Puma-Positioner | all 3.2x10° | 4100 | 0.005
Puma-Positioner | ¢; 10° 120 0.5
Puma-Positioner | gs 10° 120 0.5
Puma-Positioner | ¢s 10° 120 0.5
Puma-Platform | all 7 3.2z10° 4000 | 0.005
Puma-Platform | g3 10° 100 0.5
Puma-Platform | gs 10° 100 0.5
Puma-Platform | ¢s 10° 100 0.5

Table 8.1: Test results for the inverse functions

increased. This was done because the singular points of the inverse functions tend
to exhibit numerical instabilities.

Simulations of the joint limit avoidance and obstacle avoidance routines were
generated for the CIRSSE manipulator tlirough the use of SILMA Cimstation pack-
age. The joint limit avoidance routine was implemented in C. The simulations of the
joint limit avoidance routine are displayed in figures 8.1-8.4. Figures 8.1-8.2 display
the different possible configurations for a fixed task vector with the PUMA’s elbow
up. Figures 8.3-8.4 display a different sel of link configurations for the same task
vector with the PUMA's elbow down. Irom these figures it should be clear that
there exists many different configurations for a fixed task. The joint limit avoidance
scheme selects those that generate reachable joint vectors and then allows the user
to choose a link configuration from this set. The obstacle avoidance scheme was
implemented in matlab code. Figures 8.5-3.8 display a sample run of two manipu-
lators performing two tasks simultaneously. These figures describe the case where
the right manipulator is running the obstacle avoidance routine while performing a
task. The left manipulator is also performing a task that takes it into the workspace
of the right manipulator. The obst.acle avoidance routine on the right manipulator
causes the right manipulator’s links to move away from the left manipulator without

deviating from its task. This simulation displays the power of the obstacle avoidance
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Figure 8.1: Joint-Limit-Avoidance: Wrist BELOW Secondary elbow

routine. It allows the two manipulators to perform tasks that takes them into each
others workspace with their links being able to reconfigure themselves to avoid each

other.
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Figure 8.2: Joint-Limit-Avoidance: Wrist BELOW Secondary elbow

Figure 8.3: Joint-Limit-Avoidance: Wrist ABOVE Secondary elbow
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Figure 8.4: Joint-Limit-Avoidance: Wrist ABOVE Secondary elbow

Figure 8.5: Obstacle-Avoidance: Manipulators at time t = 0.0
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Figure 8.6: Obstacle-Avoidance: Manipulators at time t = 1.0

Figure 8.7: Obstacle-Avoidance: Manipulators at time t = 2.0
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Figure 8.8: Obstacle-Avoidance: Manipulators at time t = 3.0
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Figure 8.9: Obstacle-Avoidance: Manipulators at time t = 4.0



CHAPTER 9
CONCLUSION

This thesis has resolved the redundancy resolution problem of the CIRSSE redun-
dant manipulator through the development of two inverse functions. These inverse
functions, the Puma-Positioner and the Puma-Platform, each augmented the Carte-
sian space with a redundant task space which served to provide the necessary extra
dofs to the task space. The redundant task space or secondary task space of each in-
verse function was designed with a specific task in mind. The secondary task space
of the Puma-Positioner allowed the user to position the base of the PUMA. The
secondary task space of the Puma-Platform enabled the user to place and configure
the end-effector and the links. These inverse functions were then applied to the
areas of joint limit and obstacle avoidance. The Puma-Positioner was incorporated
into a joint limit avoidance scheme by defining its secondary task vector based on
link and joint constraints. The Puma-Platlorm’s secondary task vector was defined
by the location of obstacles in the manipulator’s workspace. These obstacles caused

the links to reconfigure themselves without affecting the end-effector’s motion.

9.1 Future Work

The inverse functions in this thesis were developed specifically for use in the
joint limit and obstacle avoidance routines. Other avenues of research include devel-
oping inverse functions that deal with manipulator singularities and manipulability.
Also, these inverse functions only provide a kinematic structure for the manipu-
lators. In order to effectively coutrol these manipulators, a dynamic approach to
redundant manipulators must be developed. Such an approach could be developed

by combining control theory and redundancy resolution methods.
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APPENDIX A
Symbol Definitions

o a ® b: The cross product of the vectors a and b.
e a ®b: The dot product of the vectors a and b.

o o * 3: The scalar multiplication of the scalars « and .

T4
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o APPENDIX B .
Modified Denavit-Hartenberg Representation i
The homogeneous transformation relating the i** frame to the (i — 1)** frame, as %
given in Craig([16]. is described by
-
Cg, -')/), 0 a;_1 %
- m
Ti_l S58,Caiq Cl.C ;4 —S'a,-_l —d,-Sa,-_l
59,‘50,‘_1 C@;S(r,’_l Ca.-_l d;C’a,-_l ;
0 0 0 1
B) =
where (a;, a,,d;, 8;) are defined as:

[ ]
e a;: the distance from Z; to Z;,.; measured along X; —
5
o «;: the angle between Z; to Z;4; measured about Xj .
_ L , n

o d;: the distance from X;_; to X; measured along Z;
e §;: the angle between X;_| to X; measured about Z; -
=
%
%
=
=
S0 =
=
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APPENDIX C
The Jacobian of the CIRSSE manipulator

The Jacobian is represented by

0 z0 A Al VA A VA A
20 Z9x PY, Z9x PO, Z0 < PY, Z¥x P8, Z9x P8, Z¢x PP, ZYx P
(C.1)

In order to evaluate the manipulator’s singularities, the Jacobian of frame
seven relative to frame six. J&, as described by Fijany and Bejczy[17], was calculated

and is described by

0 J12 54056 —-5.56 0 0 0 —57 0753
0 J22 —54556 —(756 0 0 -1 0 —Cs
0 S35y Cy 0 1 1 0 C; S:Ss
J? =
Jal Ja2 Ja3 —diCss dr+asSs dr 0 0 0
Js1 Js2 Js3 d.5s¢ ag+asCs as 0 0 0
Jor Cada+ S34,  Sedy A 0 0 0 O 0
(C.2)

J12 = —53C,Cs — C3556

Joz = 53 Ss6 — C3C0s6

Ja1 = S2(C3C4Css — S3556) + C25.Cs6
Js1 = —52(C3CS56 + S3Cs6) + (254536
Jaz = S35 A3 + dejn

Js2 = =935 44 — ds12

Jaz = Cyds = ds5y556

S



Jsa = —CyAs— dsS4C'se

A =d, — asSs — agSss + d7Cse
Ay = a5Cs + a6Css + d=Ss

Az = diCss + as5s + d7

Ay = dySse — asCy — ag
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APPENDIX D
The Augmented Jacobian of the CIRSSE manipulator

The augmented Jacobian .J, is defined hy:

Je
dg/dq

J, =

(D.1)

where dg/dq is a (3 x n) matrix that represents the redundant task space

velocities. The kinematic functions of tlie Puma-Positioner are identity functions.

The redundant task space velocities are just the velocities of joints one, two and

three and are described by

g = q
G = ¢
g = ¢

The kinematic functions of the Puma-Platform are d1,he and theta.

velocities, d1, he and theta, are described by:

dl = ql
ry = (lg + ag + d? -+ 2(15((1755 + a6C6)
((ed + & —ad)* — 21)ds

he = =
pA
. p2ey * p2ez — pez * p2ey
theta = — > - 2
(p2ey)? + (p2ez)
pey = —Cp kS| K PEr — 8 * Sg x pey + ¢ * pez

p2ez = 3 % pET — C} * pey

S

(D.2)
(D.3)
(D.4)

Their

(D.5)

(D.6)

(D.7)
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